Palladium-Catalyzed Reactions of Triorganosilicon Hydrides with Halocarbons

JOEL D. CITRON, JAMES E. LYONS, AND LEO H. SOMMER'

Department of Chemistry, University of California at Davis, Davis, California 96616

Received July 1, 1968

The palladium-catalyzed reactions of silicon-hydrogen bonds with a wide variety of halocarbons produces silicon halides (except fluorides) in high yields. The method is fast and convenient, and has the advantage of not involving contact with either elemental halogen or (free) hydrogen halide. The other products **of** the reaction depend upon the halocarbon used, but generally all **of** the halogen atoms are removed from the halocarbon molecules that react. Discussion of the mechanism of the reaction is based on the nature **of** the reaction products, and the stereochemistry at asymmetric silicon, which is retention of configuration.

In a recent paper2 from this laboratory we reported that halosilanes could be prepared by the group VI11 metal catalyzed reaction of $HX (X = halogen)$ with silicon-hydrogen bonds. Continuing our work in this area, we now report a new general catalytic reaction3 for the preparation of halosilanes.⁴

Use of a wide variety of halocarbons has revealed some very interesting mechanistic facets of reactions

$$
\equiv CX + \equiv SiH \xrightarrow{Pd-C} \equiv SiX + \equiv CH \tag{1}
$$

of type 1. This route to the preparation of halosilanes had advantages over direct halogenation, particularly for compounds sensitive to halogen or hydrogen halide. The catalyst used is clearly preferable to Lewis acids such as **AlX3** which have previously been reported to catalyze type-1 reactions.⁵

In Table I are given the results of type-1 reactions. Table I shows that they comprise an excellent method for preparation of chloro- and bromosilanes (and probably iodosilanes). In all cases where reaction occurred, high yields of halosilanes were obtained, and no organosilicon side products were found. The reactions are easily performed, are fairly rapid, and the halosilane products were easily isolated by distillation or crystallization. Owing to the highly exothermic nature of the reaction when using the more reactive compounds, it is necessary to provide adequate cooling, or to add the silane slowly.

The reactions with tribenzylsilane illustrate the value of this method. The reaction of tribenzylsilane with chlorine is reported to yield tribenzylchlorosilane in $< 60\%$ yield,⁶ although this can be improved by doing

(3) A reaction employing a mixture of an a-halo ester (a highly activated halide) and colloidal nickel has been used to prepare halosilanes from **organo**silicon hydrides: N. F. Orlov, R. A. Bogatkin, 2. I. Sergeeva, and M. G. Voronkov, *Zh. Obshch. Khim., 38,* **1934 (1963);** N. **F.** Orlov and L. N. Slezar, *ibid.,* **86, 1078 (1966).**

(4) After this study was completed, it came to our attention that a very limited investigation of a similar reaction using metal catalysts (Ni, Co, Pd, Pt) with halobenzenes had been reported to yield halosilanes in high yield [Yu. I. Khudobin, B. N. Dolgov, and N. P. Kharitonov, *Khim. i. Prakt. Primenenie Kremnorgan. Soedin., Tr. Konf., Leningrad,* **1858, 155 (1961);** *Chem. Abstr.,* **56,** *8737* **(1962); Yu. I.** Khudobin, M. G. Voronkov, and N. P. Khartonov, *Latvijas PSR Zinatnu Akad. Vestis Kim. Ser.,* **595 (1967);** *Chem. Abstr.,* **68, 69070 (1968)).** The general reaction is

RsSiH + PhX
$$
\xrightarrow{\text{metal}}
$$
 PhH + RsSiX
\n Δ 99% 90-98%
\n $X = \text{Cl, Br, I}$

(5) C. Eaborn, "Organosilicon Compounds," Butterworth and Co. Ltd., London, **1960,** p **212.**

(6) J. W. Jenkins and H. W. Post, *J. Org. Chsm.,* **16, 556 (1950).**

the reaction in darkness.' Using the catalytic reaction (reaction no. 12 and 13 in Table I), pure tribenzylchlorosilane was obtained in almost quantitative yields.

A very interesting facet of this reaction is provided by the nonsilane products. With few exceptions, partially reduced halocarbons could not be isolated from the reaction mixtures. For example, in the reactions of CC1, (reaction no. **3** and 12 in Table I), CHCla, CH_2Cl_2 , CH_3Cl , or C_2Cl_6 were not detected as products (vapor phase chromatography and mass spectrum, see Experimental Section). Partially reduced products were also not found in the reactions of CHCl₃ (reaction no. 4), CH3CC13 (no. 6), and PhCC13 (no. **8)** (except for a dimer). Instead, completely reduced or coupled products are formed. For CCL_4 and Et_3SiH , eq 2 CH₂C₁₂, CH₃C₁, or C₂C_{1₆} were not detected as products (vapor phase chromatography and mass spectrum, see Experimental Section). Partially reduced products were also not found in the reactions of CHCl₃ (rea

$$
\text{CCl}_{4} + \text{Et}_{3}\text{SiH} \xrightarrow{10\% \text{ Pd-C}} \text{Et}_{3}\text{SiCl} + \text{CH}_{4} + \text{H}_{2} + \text{C}_{n}\text{H}_{2n+2} \quad (2)
$$

$$
85\% \qquad 15\% \qquad 40\%
$$

applies. This complete reduction does not occur in either the uncatalyzed reaction⁸ (eq 3) or in the pal-

ladium-catalyzed hydrogenolysis of CCl₄ (eq 4).⁹ In
\n
$$
(Me8Si)8SiH + CCl4 \xrightarrow{reflux} (Me8Si)8SiCl + CHCl3
$$
\n(3)

$$
CCl_4 + H_2 \xrightarrow{Pd-pumice} CHCl_3 + C_2Cl_6 + HCl
$$
 (4)

the present reaction, the order of reactivity as shown in Table I is $\text{CCl}_4 > \text{CHCl}_3 \gg \text{CH}_2\text{Cl}_2 > n$ -BuCl. Thus it is obvious that *the production* of *methane (or other hydrocarbon) in eq 2 does not occur by simple stepwise reduction of CCl₄.* Indeed, it seems clear that *a halocarbon molecule gives an activated or reactive species which stays on the catalyst surface until all* of *the halogen is stripped away.*

The coupling products are also of some interest. When C_2Cl_6 was isolated from the hydrogenation of CCl_4 ⁹ it was attributed to dimerization of $\cdot CCl_3$. In an analogous way, formation of $(PhCCl₂)₂$ from $PhCCl₃$ and $(Ph)₂$ from PhCl and PhBr strongly suggests that these products derive *formally* from dimerization of PhCCl₂ and Ph \cdot , although the latter most probably are not present as "free" radicals. Likewise, formation of higher hydrocarbons (consisting mostly of **CH2** and CHI groups) from CC1, suggests

⁽¹⁾ To whom inquiries should be addressed.

⁽²⁾ L. H. Sommer and J. D. Citron, *J. Org. Chem.,* **SS, 2470 (1967).**

⁽⁷⁾ Reference **5,** p **169.**

⁽⁸⁾ H. Gilman and R. L. Harrell, *J. Organometd. Chem., I,* **199 (1966).** The example cited here is an exceptionally good one. It has been reported **[Y.** Nagai, *et d.,* J. *Organometal. Chem.,* **9, P21 (1967)l** that RsSiH does not react with CCh, even after **10 hr** at **SOo.** This illustrates the value of the palladium catalyst.

⁽⁹⁾ M. A. Besprozvannyi, N. F. Kononov, and V. V. Kharlamov, Izv. *Akod. Nauk SSSR, Ser. Khim.,* **1345 (1965).**

				10 % 1 d-0 CATABLE D TEACHORS OF HADOCARDONS WITH SHIROW THEROGEN DONDS		
Type-1 reactions. no.	Silane	Halocarbon	Reaction time, ^a min	Halosilanes ^b	-Products- Other solids and liquids ^b	Gases (ratio \circ volume ⁴)
1	Et _a SiH	PhCF ₂	(1440)	No reaction \langle ir \rangle		
$\boldsymbol{2}$	Et _s SiH	${\tt PhF}$	(1000)	No reaction (ii)		
3	Et _s SiH	COL ₄	≤ 1	$Et_3SiCl (85\%, i)$	C_nH_{2n+2} (ir, nmr)	$H2, CH4 (1.0:0.18, 5.3 ml)$
$\overline{\mathbf{4}}$	Et.SiH	CHCI,	20	$Et8SiCl$ (glpc)	$Cl_2C = CCl_2$ (glpc)	$H2, CH4 (1.0:1.5, 6.7 ml)$
$\bar{\mathbf{5}}$	Et _a SiH	CH_2Cl_2	(2300)	Little or no reaction (ir)		
6	Et _s SiH	CH ₃ CCl ₃	150	$Et3SiCl$ (glpc)		H_2 , C_2H_6 (1.0:2.2, 4.5 ml)
7	Et_3SiH	PhCH ₂ Cl	\leq 1	$Et3SiCl$ (glpc)	$PhCH3$ (glpc)	None
8	Et _s SiH	PhCCl _a	\leq 1	$Et3SiCl$ (glpc)	$(PhCCl2)2$ ^e (72%, i) $PhCH3$ (20%, glpc)	H_2 (5.5 ml)
9	Et _a SiH	n -BuCl	(1400)	No reaction (ir)		
10	Et_3SiH	PhCl	7	Et ₃ SiCl (ir, glpc)	$PhH (78\%, glpc)$ PhPh $(31\%,$ glpc)	Gas evolved
11	Et _s SiH	$o\text{-}\mathrm{Cl}_2\mathrm{C}_6\mathrm{H}_4$	1800	$EtsSiCl$ (ir)	f	Gas evolved
12	(PhCH ₂) ₃ SiH	$\overline{\text{COL}}$	(1200)	$(PhCH2)8SiClg (99\%, i)$		Gas evolved
13	(PhCH ₂) ₃ SiH	PhCH ₂ Cl	(1200)	$(PhCH2)8SiClg (99\%, i)$		None
14	α -NpPhMeSiH	CCL	15	α -NpPhMeSiCl (95%, i)		Gas evolved
15	α -NpPhMeSiH	CHCl ₃	1560	α -NpPhMeSiCl (93 $\%$, i)		Gas evolved
16	α -NpPhMeSiH	PhCH ₂ Cl	(2880)	α -NpPhMeSiCl (90%, i)		None
17	Et_3SiH	CHBr ₂	105	$EtsSiBr$ (ir)		H_2 , CH ₄ (1.0:0.88, 6.8 ml)
18	Et_3SiH	PhCH ₂ Br	$\overline{2}$	$Et8SiBr$ (ir)		None
19	$\rm Et_sSiH$	PhBr	$\overline{4}$	Et,SiBr (ir, glpc)	PhH $(79\%,$ glpc) PhPh $(24\%,$ glpc)	Gas evolved
20	Et.SiH	PhI	25	$Et_8SiI(?)^h$		Gas evolved

TABLE I **10%** Pd-C CATALYZED REACTIONS OF HALOCARBONS WITH SILICON-HYDROGEN BONDS

^a Based upon length of time of gas evolution or until reaction started to cool. When these were not observed, time of work-up is given in parentheses. *b* Identified by the following methods: i, isolated; ir, infrared spectrum; nmr, nuclear magnetic resonance spectrum; glpc, gas–liquid partition chromatography. •Molar ratio, determined by mass spectrum. •Total volume of gas per mmole of Si–H
bond, corrected for vapor pressure of the solvent and to STP. •Mp 159–161°. •An unidentified whit reaction, which, by analogy with the preceeding reaction, was probably a mixture of poly-o-phenyls. \circ Mp 140.5-141.5°. ^{*} Owing to the highly corrosive nature of the reaction mixture [it gave off acidic fumes (HI) and had a purple color (I_2)], it was not examined spectroscopically.

coupling of \cdot CCl₃, \cdot CCl₂, and \cdot CCl units with subsequent reduction, or alternately the coupling of the corresponding hydrocarbon units. Since these reactions do not occur without the silane being present (see Experimental Section), the silane must be intimately involved in one of the first steps of the reaction.

In view of the above evidence, the mechanism in eq *5-8* seem reasonable. Repetition of steps similar to

$$
\equiv
$$
 SiH $\xrightarrow{\text{catalyst}}$ $\xrightarrow{\text{H} \equiv \text{Si}}$ (5)

$$
\begin{array}{ccc}\n\text{H} & \text{Catalyst} & \text{H} = \text{Si} \\
\downarrow & \downarrow & \downarrow \\
\text{catalyst} & & \\
\downarrow & \downarrow & \downarrow\n\end{array} \tag{5}
$$
\n
$$
\begin{array}{ccc}\n\text{H} & & & \\
\text{catalyst} & & & \\
\text{catalyst} & & & \\
\text{H} & & & \\
\downarrow & \downarrow & \downarrow\n\end{array} \tag{6}
$$
\n
$$
\begin{array}{ccc}\n\text{H} & & & \\
\text{C} & \text{H} \text{X} & & \\
\downarrow & & \downarrow\n\end{array}
$$

$$
HX = Si
$$

\n
$$
= Si
$$

\n
$$
= Si
$$

\n
$$
= G
$$

 \overline{O} (8) $\mathsf{C} X$ \equiv SiX + ± 1

eq *6* or 8 would remove more halogens from the adsorbed carbon species, and carbon-carbon, carbonhydrogen, and/or hydrogen-hydrogen coupling concurrent with or after the halogen stripping would account for the products observed. The cleavages are meant to be homolytic, but "free radicals" are not necessarily implied.

The question as to whether hydrogen abstracts halogen (eq *6* above), with the resulting "hydrogen halide" halogenating the silicon, or silicon directly combines with halogen (eq 8 above) is a difficult one. Although the problem cannot be resolved at this time,

there is circumstantial evidence supporting both hypotheses. ΔH for both reactions, at least in the gas phase, is favorable, being **-34** kcal/mol for eq *6,* and -58 kcal/mol for eq 8, both using CCL₄ as the halocarbon.10 The uncatalyzed tin hydride reduction of carbon-halogen bonds is believed $11,12$ to proceed through a step similar to eq 8, but the over-all reaction is a stepwise reduction. Finally, the stereochemistry (Table 11) is retention of configuration at asymmetric silicon, which is the same stereochemistry observed in the palladium-catalyzed reaction of hydrogen chloride with silicon-hydrogen bonds.2 Thus the reaction *could* proceed through adsorbed hydrogen chloride molecules.

Consideration of the stereochemistry raises two other points. The first of these is that silicon "free radicals" are not present, since they would lead to racemization. Thus, even if the silicon-hydrogen bond underwent homolytic cleavage, the silyl "radical" would be strongly adsorbed or bonded to the catalyst surface. Second, while the stereochemistry could imply a simple

⁽¹⁰⁾ **Calculated from values given by the following: L. A. Errede,** *J. Phrs. Chem.,* **64,** 1031 **(1960);** G. **0. HWE, F. W. Lampe, and L. H. Sommer,** *J. Amer. Chem. SOc., 81,* 5327 (1965).

⁽¹¹⁾ Silyl "radicals" are known to abstract halogen from halocarbons such as alkyl chloridea [(J. A. Kerr, B. J. A. Smith, A. F. Trotman-Dickenson, and J. C. Young, *J. Chem. SOC., A,* 510 (1968); **R.** N. **Hasreldine and J. C. Young,** ibid., 4503 (1960)], and aryl halides [J. Curtice, H. Gilman, and G. S. Hammond, J. Amer. Chem. Soc., 79, 4654 (1957); A. G. Beaumont, C. Eaborn, **R. A. Jackson, and R.** W. **Walsingham,** *J. OrganometaL Chem.,* **6, 297** (1966) I. **It has been noted (Haszeldine and Curtice) that fluorine is abstracted much**

leas readily than either chlorine or bromine. (12) **L.** W. **Menapace and H. G. Kuivila,** *J. Amer. Chem.* **SOC., 86,** 3047 (1964).

TABLE I1

STEREOCHEMISTRY OF THE PALLADIUM-CATALYZED REACTION
Of $(-)$ - α -NpPhMeSi*H with Chlorocarbons

Chlorcarbon	$[\alpha]$ D, deg, product ^a	Stereospecificity ^b
CCl ₄	$+4.2$	83% , retention
CHCl ₃	$+3.1$	75% , retention
PhCH ₂ Cl	$+0.9c$	57% , retention
PhCH ₃ Cl ^d	$+1.0$	58% , retention
$PhCCls$ ^d	0.0	Racemic
PdCl ₂	$+5.8$	96% , retention

a Based upon optically pure starting material. Rotations taken in cyclohexane or heptane. *b* Based upon optically pure a-NpPh-MeSi*Cl having $[\alpha]D 6.3^{\circ}$ *(cf. L. H. Sommer, C. L. Frye, and* **K. W. Michael,** *J. Amer. Chem. Soc.***, 86, 3271 (1964).** *c* **Rotation** may have been due to impurities; crystallized material waa racemic. **d** Done in heptane solvent (to reduce the possibility of solvent induced racemization) with \sim 10 mol $\%$ excess of chlorocarbon. *6* See Experimental Section.

four-center mechanism such as

$$
\begin{array}{c}\n\text{S}_{i}\text{---C1} \\
\downarrow \\
\downarrow \\
\text{---CX}_{3} \\
\text{catalyst}\n\end{array}
$$

the products obtained clearly show that the actual mechanism is more complex. Such a *simple four-center mechanism would lead to stepwise reduction, which is not observed.*

The failure of the fluorides to react is of some interest (reaction no. **1** and **2).** In terms of the thermochemistry of processes analogous to eq **6** and **8,** the transformation is still favorable. However, the carbonfluorine bond energy is much higher than any of the other C-X bond energies, and this may inhibit reaction rate. Another factor which may be important would derive from a significant difference in adsorption of C-F relative to the situation for the other halogens. Perhaps C-F is adsorbed less strongly because fluorine does not have low-lying vacant d orbitals. This difference in adsorption may also account for the difference in stereochemistry between HF and HC1 when allowed to react catalytically with the silicon-hydrogen bond.²

Experimental Section

All halocarbons were the best commercially obtainable grades, and were purified (especially dried) before use, if necessary. Triethylsilane was prepared from the reduction of triethylchlorisilane with LiAlH₄, bp 109°. The 10% Pd–C was obtained from Matheson Coleman and Bell.

General Procedure.-The 10% Pd-C catalyst (50 mg) was placed in an erlenmeyer flask protected from atmospheric moisplaced in an erlenmeyer flask protected from atmospheric moisture, and 10 ml of the halocarbon was added. The silane (1 ml, or 1 g in the case of solids) was added, and the reaction was allowed to proceed. In the case of larger scale runs, cooling was provided where necessary. The catalyst was then allowed to settle or **was** filtered from the solution.

Analysis of the Reactions.-Where the halosilanes were isolated, they were obtained by either distillation or crystallization, and their physical constants compared with their literature values.1a

Infrared spectra were obtained on a Beckman IR-12 using KBr optics, usually employing the solvent in which the reaction was carried out. The band at 2100 cm⁻¹ identified unreacted Si-H, and the bands at 480 and 410 cm⁻¹ identified the Si-Cl and Si-Br stretching vibrations, respectively. **l4** Vapor phase chromatograms were obtained on a 5 -ft 20% SE-30 on Chromosorb W column using helium **as** the carrier **gas** at a flow rate of **50-60** ml/min in an Aerograph A90P3 instrument. All compounds were identified by the correspondence of their retention times with known substances. In addition, certain compounds were searched for and not found, and these are listed in Table 111.

TABLE III

COMPOUNDS NOT DETECTED **IN** 10% Pd-C

^aReaction numbers refer to those given in Table I. *b* A con- trol experiment was run in which 0.1 **ml** of CHCla was added prior to the reaction of 10 ml of CC14 and 1.0 ml of EtsSiH. Analysis (glpc) before and after the reaction indicated that the amount of CHCl₃ present was unchanged.

Reactions in which the gases were analyzed were run in a closed system under nitrogen, and the gases produced were measured in a gas buret over mercury. The gases were then expanded into an evacuated flask, and analyzed by a CEC Model 21-104 mass spectrometer.16 Compounds whose peaks were searched for and not found are listed in Table 111. Ratios were computed from the peak intensities, after calibration with appropriate standards.

Attempted Reaction of PhCCl₃ with 10% Pd-C.--A mixture of PhCCl_s (15 ml) and 0.15 g of 10% Pd-C was stirred for 50 hr at room temperature, and then 40-50° for 15 min. After filtration, no (PhCCl₂)₂ could be found in the filtrate. Therefore, PhCCl₂ is stable in the presence of only 10% Pd-C.

Palladium Black Catalyzed Reaction **of EkSiH** and CCl,.- Palladium black (0.111 g) (from the reaction of α -NpPhMeSi*H and $PdCl₂$) and $CCl₄$ (12 ml) were mixed in a flask. Triethylsilane (1.20 ml) was added, and a very vigorous reaction (heat, gas evolution) ensued. After the reaction subsided the mixture washed with pentane and then dried under vacuum (5×10^{-2} mm) for 30 hr. The catalyst was analyzed to see if any carbon was produced in the reaction.

Anal. Found: C, **5.2** (before reaction). C, 6.0 (after reaction).

Thus no appreciable amount of carbon was formed.

Reaction of PdCl₂ with α **-NpPhMeSi*H.**—A solution of 1.38 g of $(-)$ - α -NpPhMeSi*H ($[\alpha]$ p -35°) in 50 ml of pentane was prepared, and to this was added 1.0 g of anhydrous PdCl₂. A vigorous reaction (gas evolution) occurred, and after 1 hr the residual palladium black was removed by filtration. After crystallization, 1.15 g (73%) of α -NpPhMeSi^{*}Cl, $[\alpha]_D$ +5.8°, was obtained.

Registry No.-Silane (reaction **1,** Table I), **617-86-7;** silane (reaction **12,** Table I), **1747-92-8;** silane (reaction 14, Table I), 1025-09-8; PdCl₂, 7647-10-1; PdC, **123 13-34-7.**

Acknowledgment.--We wish to thank the National Science Foundation for support of this work.

⁽¹³⁾ V. Barant, V. Chvalovsky, and J. Rathousky, "Orgrnosilioon Compound#," Vol. 2, Academic Preas, New York, N. Y., 1966.

⁽¹⁴⁾ A. L. Smith, Spccfrochim. Acta, 16, 87 (1960); 19, 849 (1963).

⁽¹⁶⁾ The authora wish to thank Mr. John Voth for his aid in obtaining the mans spectra.